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Abstract. After a review of operator calculus methods for working with Lie algebras and Lie
groups, we discuss solving evolution equations associated with Lie groups. Our techniques involve
a dual approach to the Wei–Norman method and a formulation of the propagator in terms of
corresponding stochastic processes. Solutions with polynomial initial conditions yield generalized
Appell systems. The theory is illustrated using the affine group and a family of nilpotent Lie groups.

1. Introduction

Finding explicit solutions of evolution equations is one of the most important problems in
mathematical physics. Prominent examples include Schrödinger’s equation, the heat/diffusion
equation, the Fokker–Planck equation and master equations in statistical mechanics.

Even in relatively simple cases, for equations on Lie groups general solutions are not
known explicitly. The operator calculus methods that we have developed provide an approach
for computing solutions that is particularly effective for, but not limited to, polynomial initial
conditions. These solutions are (generalized) Appell systems [5]. They generalize the well
known Hermite and Laguerre polynomials which arise classically as solutions to the heat
equation (with a constant diffusion coefficient).

Here, in section 2 we present an updated review of our approach to computing
representations. The idea of starting from the universal enveloping algebra is based originally
on work of Gruber et al (see, e.g., [6]), and we have developed methods for general Lie groups,
providing the basis of the theory and applications presented in Feinsilver and Schott [3]. In
section 3 the connection between evolution equations and stochastic processes on Lie groups
is presented. Section 4 is devoted to generalized Appell systems. Section 5 illustrates Appell
systems for some specific Lie groups. We find connections with the theory of Lie symmetries
for differential equations.

The method we use, based on the action of the Lie algebra on the universal enveloping
algebra, turns out to be dual to the Wei–Norman method, the common ground of the two
approaches being the use of coordinates of the second kind, equivalently, factorization of the
group elements into one-parameter subgroups each generated by a basis element of the Lie
algebra. Cariñena et al [1] have developed applications of the Wei–Norman method as a

∗ A preliminary version of this paper appeared in the proceedings of the II International Workshop on Lie Theory
and its Applications in Physics, Clausthal, Germany, 17–20 August, 1997.
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method of group-theoretical solution of equations such as the Riccati equation, which in turn
has connections with the Schrödinger equation.

An interpretation of section 4 is that we are presenting a formulation of the propagator
in terms of stochastic processes. This depends on connecting terms of the Hamiltonian
with certain stochastic processes. A path-integral approach very close in spirit to ours has
been developed by Tomé [11]. He also uses the dual representations, for example, see
his sections 4.1, 4.2, 5.1, etc. The right dual representation plays an essential role in his
formulation. He shows some examples using the affine group; we will use the affine group
(and some nilpotent groups) here for illustration as well.

The algebraic basis of the approach is emphasized in this paper, with the aim of increasing
accessibility to readers and consequently the usefulness of these techniques. We will develop
the approach both in scope (e.g. semisimple groups) and generality (connection with Lie
symmetries) in future work.

2. Lie algebras, universal enveloping algebra and duality

2.1. Notation

Let g be a Lie algebra over k (in this paper, k is either the real or the complex numbers).
U(g) denotes the universal enveloping algebra of g and U(gop) ∼= U(g)op its opposite. Let
S : U(g)→ U(gop) ∼= U(g)op be the unique homomorphism determined by S(X) = −X for
all X ∈ g.

We will use standard multi-index notation, for example, n! = ∏
ni!, xn =

∏
x
ni
i , for

n = (n1, . . . , nd) and x = (x1, . . . , xd). Multi-indices n,m ∈ N
d are ordered by n � m iff

ni � mi for all i = 1, . . . , d.
Given a basis {ξ1 . . . , ξd} for g, we will denote the corresponding basis for U(g) by

[[n]] = [[n1n2 . . . nd ]] = ξn1
1 · · · ξndd

where we modify Dirac’s notation |n〉 since in the algebra we will consider multiplication
from both the left and the right. We will use the Dirac notation for the basis of a vector space,
representation space, where the action is from the left.

For functions of variablesA = (A1, . . . , Ad), we write ∂i for the partial derivative operator
∂/∂Ai . We will thus use Di = ∂/∂xi for differentiation with respect to variables xi .

Our summation convention is as follows: repeated Greek indices are assumed to be
summed over, while Latin indices are not summed unless the summation sign is explicit.

In the sections dealing with evolution equations, we often abbreviate ∂u/∂t , e.g., by ut ,
as is common.

Angled brackets are used to denote an expected value, e.g. 〈Y 〉 denotes the expected value
of the random variable Y .

2.2. Examples

We now introduce the Lie groups and their Lie algebras that we will use for illustration in the
following sections.

2.2.1. The affine group and its Lie algebra. First, consider the group of affine motions on the
real line Aff(1) = {g(a1, a2) ∈ R

2; a1 > 0}. Its action on functions and the corresponding
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group law are given by

g(a1, a2)f (x) = f (a1x + a2) (1)

g(a1, a2) ◦ g(b1, b2) = g(a1b1, b1a2 + b2). (2)

Aff(1) is a Lie group with a basis of the tangent space at the unit element g(1, 0) given by

ξ1f (x) = ∂

∂a1

(
g(a1, a2)f (x)

)∣∣
(1,0) = x

df

dx

ξ2f (x) = ∂

∂a2

(
g(a1, a2)f (x)

)∣∣
(1,0) =

df

dx
.

(3)

They satisfy the commutation relation [ξ2, ξ1] = ξ2. We note that this is the only non-
commutative two-dimensional Lie algebra.

2.2.2. N -step nilpotent Lie algebras. First recall the Heisenberg group. One way to define
it is via the group action

g(a0, a1, a2)f (x) = eh(a1x+a2)f (x + a0) (4)

with constant h. Then the Lie algebra is given by differentiation with respect to the parameters
ai at 0 as in (3):

ξ0f (x) = df

dx
ξ1f (x) = hx f (x) ξ2f (x) = h f (x). (5)

This can be embedded in a higher-dimensional analogue as follows. Let a denote the
parameters a0, a1, . . . , aN and set

p(a; x) =
N∑
i=1

ai
xN−i

(N − i)! .

Define the group via the action on functions

g(a)f (x) = exp[hp(a; x)] f (x + a0). (6)

The group law is thus

g(a) ◦ g(b) = g
(
a0 + b0, . . . , ai +

i−1∑
j=0

a
j

0

j !
bi−j , . . . , aN +

N−1∑
j=0

a
j

0

j !
bN−j

)
(7)

which follows by expanding p(a; x) + p(b; x + a0) and collecting terms. We have

ξ0f (x) = df

dx
and ξif (x) = h xN−i

(N − i)! f (x) (8)

for 1 � i � N . The Lie algebra g has as a basis {ξ0, ξ1, . . . , ξN }, satisfying the commutation
relations

[ξ0, ξN ] = 0

[ξ0, ξi] = ξi+1 1 � i < N (9)

[ξi, ξj ] = 0 1 � i, j � N

and is nilpotent. For N = 3 this may be identified as the centrally extended Galilean algebra
in 1 + 1 dimensions.
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2.3. Representations on U(g)

Consider the universal enveloping algebra U(g). In this algebra, multiplication from the right
and from the left give mappings

ρL, ρR : U(g)→ Hom (U(g), U(g))

in the following way. For X1, X2, X ∈ U(g), define

ρL(X1)X = X1X ρR(X1)X = XX1

which satisfy

ρL(X1) ◦ ρL(X2) = ρL(X1X2) ρR(X1) ◦ ρR(X2) = ρR(X2X1)

i.e. ρL is a representation of U(g) and ρR is a representation of U(g)op called the left and right
regular representations, respectively. Note that ρR ◦ S is a representation of U(g). Further
representations ofU(g) can be obtained from ρL by taking the quotient with respect to invariant
subspaces I ⊂ U(g); in particular, finite-dimensional representations can be obtained if the
codimension is finite. A ρL-invariant subspace I ⊂ U(g) is a left ideal, i.e. X2 ∈ I and
X1 ∈ U(g) implies ρL(X1)X2 ∈ I. Given the basis { [[n]] } for U(g), we can define matrix
coefficients Mmn(X) of ρL(X) with respect to this basis by

ρL(X)[[n]] =
∑
m�0

Mmn(X)[[m]] (10)

forX ∈ U(g) (note thatm and n are generally multi-indices). ForX ∈ U(g), one also has the
adjoint representation, a Lie algebra representation, given by ad(X)Y = XY − YX acting on
Y ∈ U(g).
Example 2.1. Consider the Lie algebra for the affine group. In the enveloping algebra, the
commutation relation [ξ2, ξ1] = ξ2 is the same as ξ2ξ1−ξ1ξ2 = ξ2 and hence ξ1ξ2 = ξ2(ξ1−1)
and ξ2ξ1 = (1 + ξ1)ξ2.

Now, take the basis { [[n1n2]] } = {ξn1
1 ξ

n2
2 } of U(g). Then the matrix coefficients of the

right and left action of the basis elements of the Lie algebra can be read from the following
relations:

ρL(ξ1)[[n1n2]] = ξ1 · ξn1
1 ξ

n2
2 = ξn1+1

1 ξ
n2
2

= [[n1 + 1, n2]] (11)

ρL(ξ2)[[n1n2]] = ξ2 · ξn1
1 ξ

n2
2 = (1 + ξ1)

n1ξ
n2+1
2

=
n∑
ν=0

(
n

ν

)
[[n1 − ν, n2 + 1]] (12)

ρR(ξ1)[[n1n2]] = [[n1 + 1, n2]] + n2[[n1n2]] (13)

ρR(ξ2)[[n1n2]] = [[n1, n2 + 1]]. (14)

Next, we give an example of a quotient representation. Let I be the left ideal generated by
ξ1 − α, i.e. I = {X · (ξ1 − α);X ∈ U(g)}. We can formulate this as the action of U(g) on a
vector space {X%:X ∈ U(g)}, i.e. formed by the action of U(g) on a fixed (‘vacuum’) vector
%, with the property that (ξ1 − α)% = 0, equivalently, ξ1% = α%. Then the basis reduces to
{ |m〉 } = { ξm2 % } and we obtain

ρ̃(ξ1)|m〉 = ξ1 · ξm2 % = ξm2 (ξ1 −m)% = (α −m)|m〉
ρ̃(ξ2)|m〉 = |m + 1〉

(15)

where the action is only from the left.
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2.4. Canonical bosons

It is convenient to represent the action of multiplication by the basis elements ξi on U(g) by
using bosons. We introduce raising operators Ri and lowering (‘velocity’) operators Vi acting
on a basis by

Ri[[n]] = [[n1, . . . , ni + 1, . . . , nd ]] (16)

Vi[[n]] = ni [[n1, . . . , ni − 1, . . . , nd ]]. (17)

These satisfy the canonical commutation relations [Vj ,Ri] = δij I , where I is the identity
operator. However, note that there is no canonical inner product implied, so that, for example,
Ri and Vi are not adjoint to each other. This is why we are not employing the traditional a, a†

notation.

Example 2.2. We continue with the affine algebra. The results (11)–(14) can be conveniently
reformulated as

ρL(ξ1) = R1 (18)

ρL(ξ2) = R2 exp(V1) (19)

ρR(ξ1) = R1 + R2V2 (20)

ρR(ξ2) = R2. (21)

The quotient representation, equation (15), can be written as

ρ̃(ξ1) = αI −RV ρ̃(ξ2) = R

where we drop subscripts.

2.5. Dual representations

We will now show how the elements of g can be realized as operators on functions. Fix a basis
{ξ1, . . . , ξd} of g, with the corresponding basis { [[n]] } for U(g) (recall section 2.1). Then

g(A1, . . . , An; ξ1, . . . , ξd) = exp(A1ξ1) · · · exp(Adξd) (22)

for A = (A1, . . . , Ad) in an appropriate neighbourhood of 0 ∈ R
d defines a neighbourhood

of the identity element ofG. These coordinates are called coordinates of the second kind (see
below, section 2.7, for coordinates of the first kind).

We interpret g(A1, . . . , Ad; ξ1, . . . , ξd) as a formal pairing of bases between the algebra
A = k[A1, . . . , Ad ] of polynomials in the commuting variablesA1, . . . , Ad , and the universal
enveloping algebra U(g).

For convenience, let A denote the d-tuple (A1, . . . , Ad) and ξ denote (ξ1, . . . , ξd).
For A choose the basis {cn(A)}, where cn(A) = An/n! = (An1

1 /n1!) · · · (Andd /nd !). Let C
be the formal infinite-tuple with components {cn(A)} and* denote the corresponding infinite-
tuple { [[n]] }. Then, expanding the exponentials in (22) shows that

g(A; ξ) =
∑
n∈Nd

cn(A)[[n]] = 〈C, *〉. (23)

(We note that this interpretation is useful for generalizing our procedure to quantum groups,
[2].)
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On the group element g(A; ξ), the action of the boson operators Ri and Vi transfers to
operators acting on functions of the A-variables; i.e. shifting indices accordingly,

Rig(A; ξ) =
∑
n

cn(A)[[n1, . . . , ni + 1, . . . , nd ]] (24)

= ∂

∂Ai
g(A; ξ) (25)

Vig(A; ξ) =
∑
n

cn(A)ni [[n1, . . . , ni − 1, . . . , nd ]] (26)

= Ai g(A; ξ). (27)

Now consider multiplying a basis element [[n]] by ξi . It results in a linear combination of the
basis elements of the enveloping algebra. In general, we can write, using the canonical boson
operators, ξi[[n]] =∑

k φik(R)πik(V)[[n]]. Write this action, expressed in terms of bosons, as
ξi[[n]] = ξ̂i[[n]]. Now, using the formal pairing, applying ξi term-by-term, we have

ξig(A; ξ) = 〈C, ξi*〉 = 〈C, ξ̂i*〉 = 〈ξ ‡
i C, *〉 = ξ ‡

i g(A; ξ)
i.e. we dualize the action on the enveloping algebra to that on functions of A. Similarly,
multiplication on the right yields

g(A; ξ)ξi = 〈C, *ξi〉 = 〈ξ.i C, *〉 = ξ.i g(A; ξ)
(note that we consider the boson formulation ξ̂i only for the left action). Now, since on g as a
function of A the Lie algebra acts as vector fields, these operators are first order in the partial
derivatives ∂/∂Ai . Thus the action on the enveloping algebra, ξ̂i , is first order in the raising
operators Rk . Summarizing, we have (recall the abbreviated notation for partial derivatives
with respect to the variables Ai , section 2.1):

Proposition 2.3.

(a) The left multiplication by basis elements on the universal enveloping algebra U(g),
dualizes to vector fields, the left dual representation; i.e. there is a matrix of functions,
π‡(A) such that

ξig(A; ξ) = ξ ‡
i g(A; ξ) =

∑
j

π
‡
ij (A)∂jg(A; ξ).

This in turn is dual to the left action

ξ̂i =
∑
j

Rjπ
‡
ij (V)

of the action of g on U(g) expressed in terms of canonical bosons. This is called the
double dual.

(b) The right multiplication by basis elements on the universal enveloping algebra U(g),
dualizes to vector fields, the right dual representation; i.e. there is a matrix of functions,
π.(A) such that

ξig(A; ξ) = ξ.i g(A; ξ) =
∑
j

π.ij (A)∂jg(A; ξ).
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Thus maps ρ‡ : U(g) → Hom(Ā, Ā) and ρ∗ : U(g) → Hom(Ā, Ā) are induced, via
ρ‡(ξi) = ξ ‡

i and ρ∗(ξi) = ξ ∗i Ā denoting smooth functions. They satisfy

ρ†(X1) ◦ ρ†(X2) = ρ†(X2X1) (28)

ρ∗(X1) ◦ ρ∗(X2) = ρ∗(X1X2) (29)

for X1, X2 ∈ U(g), i.e. ρ∗ is a representation of U(g) and ρ† is a representation of U(g)op.
The double dual may be written using variables xi and corresponding differential operators

Di = ∂/∂xi , via the replacements Ri → xi , Vi → Di . In this way, one can find representations
on spaces of functions f (x1, . . . , xd) corresponding to quotient representations such as those
found above from U(g), section 2.3.

2.5.1. Example: the affine group. For the affine group, define the group elements with respect
to coordinates of the second kind by

g(A1, A2; ξ1, ξ2) = exp(A1ξ1) exp(A2ξ2). (30)

This may be interpreted as a formal pairing of bases {cn1n2(A) = (A
n1
1 /n1!)(An2

2 /n2!)}
and {[[n]] = ξ

n1
1 ξ

n2
2 }. In practice, it is often convenient to obtain vector field realizations

corresponding to left and right multiplication by using the adjoint representation of the group;
i.e. the fact that the exponential of the adjoint representation in the Lie algebra is conjugation
in the group. Using the commutation relation [ξ2, ξ1] = ξ2, equivalently, −(ad ξ1)(ξ2) = ξ2,
we have

e−A1ad ξ1ξ2 = ξ2 + A1[−ξ1, ξ2] + 1
2A

2
1[−ξ1, [−ξ1, ξ2]] + · · · = eA1ξ2 (31)

eA2ad ξ2ξ1 = ξ1 + A2[ξ2, ξ1] + 1
2A

2
2[ξ2, [ξ2, ξ1]] + · · · = ξ1 + A2ξ2. (32)

Thus, for ξ1 (with partial derivatives always with respect to the A-variables),

ξ
†
1 g = ξ1eA1ξ1 eA2ξ2 = ∂1g (33)

ξ ∗1 g = eA1ξ1 eA2ξ2ξ1 = eA1ξ1 eA2ξ2ξ1e−A2ξ2 eA2ξ2

= eA1ξ1 eadA2ξ2ξ1eA2ξ2 = eA1ξ1(ξ1 + A2ξ2)e
A2ξ2

= (∂1 + A2∂2)g (34)

and similarly for ξ2.

Proposition 2.4. The left dual representation is given by

ξ
†
1 = ∂1 ξ

†
2 = eA1∂2

the right dual is

ξ ∗1 = ∂1 + A2∂2 ξ ∗2 = ∂2

and the double dual (in {x,D} variables) is

ξ̂1 = x1 ξ̂2 = x2 eD1 .

The corresponding pi-matrices are

π‡ =
(

1 0
0 eA1

)
π. =

(
1 A2

0 1

)
.
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Note that the double dual expressed in {R,V} variables is identical to the action of left
multiplication on U(g) as we found above, equations (18) and (19).

Here are two quotient representations with bases and action written in terms of {x,D}
variables.

(a) For ξ1% = α%, the basis is |m〉 = ξm2 % and

ξ̂1 = α − x2D2 ξ̂2 = x2.

(b) For ξ2% = β%, the basis is |m〉 = ξm1 % and

ξ̂1 = x1 ξ̂2 = βeD1 .

There are analogous representations for actions on the right.

2.5.2. Example: some nilpotent groups. The defining commutation relations imply, for
1 � j � N ,

eA0ad ξ0ξj = ξj + A0ξj+1 +
A2

0

2!
ξj+2 + · · · + A

N−j
0

(N − j)!ξN

=
N−j∑
i=0

Ai0

i!
ξj+i (35)

e−Aj ad ξj ξ0 = ξ0 + Ajξj+1. (36)

With

g(A; ξ) = g(A1, . . . , AN,A0; ξ1, . . . , ξN , ξ0) = eA1ξ1 · · · eANξN eA0ξ0 (37)

using the adjoint action we find

Proposition 2.5. The left dual representation is given by

ξ
‡
0 = ∂0 +

N−1∑
i=1

Ai∂i+1 ξ
‡
j = ∂j 1 � j � N

the right dual is

ξ ∗0 = ∂0 ξ ∗j =
N−j∑
i=0

Ai0

i!
∂j+i 1 � j � N

and the double dual (in {x,D} variables) is

ξ̂0 = x0 +
N−1∑
i=1

xi+1Di ξ̂j = xj 1 � j � N.

For N = 4, the corresponding pi-matrices are

π‡ =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 A1 A2 A3 1
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and

π∗ =




1 A0 A2
0/2 A3

0/6 0

0 1 A0 A2
0/2 0

0 0 1 A0 0

0 0 0 1 0

0 0 0 0 1




which suggest the general pattern.

Remark 2.6. One can show that, in fact, π∗(π‡)−1 is the transpose of the group element
g(A; ξ̌ ) formed by exponentiating the matrices of the adjoint representation of the Lie algebra
(see [3, pp 36–7]).

2.6. The composition law

We will now look at a composition law for formal pairings. Since the formal pairings are local
group elements this will be the group multiplication in coordinates of the second kind. Given
two group elements g(A; ξ) and g(B; ξ) their product g(A; ξ)g(B; ξ) = g(A�B; ξ) is also
a group element. The notation A� B indicates the product in terms of the coordinates. The
composition law� is, in general, uniquely defined only for a sufficiently small neighbourhood
of 0. We give the explicit form of the composition law for our example groups (cf the group
law as given in section 2.2).

2.6.1. Example: the affine group.

Proposition 2.7. For the affine group, the composition law is

A� B = (A1 + B1, eB1A2 + B2).

Proof. We want to calculate eA1ξ1 eA2ξ2 eB1ξ1 eB2ξ2 . The main question is how to commute the
second term past the third one. Referring to equation (31), we have e−Bξ1ξ2eBξ1 = eBξ2.
Exponentiating both sides yields

e−Bξ1 eAξ2 eBξ1 = exp(eBAξ2).

Thus,

eA2ξ2 eB1ξ1 = eB1ξ1 exp(eB1A2ξ2)

and collecting terms yields the result. �

2.6.2. Example: some nilpotent groups. To multiply

eA1ξ1 · · · eANξN eA0ξ0 eB1ξ1 · · · eBNξN eB0ξ0

we have to commute exp(A0ξ0) past each exp(Bj ξj ) for 1 � j � N . From equation (35), we
have, for 1 � k � N , eA0ξ0ξke−A0ξ0 , and exponentiating yields

eA0ξ0 eBkξke−A0ξ0 = exp

(
Bk

N−k∑
i=0

Ai0

i!
ξk+i

)
.
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Now set k + i = j and recombine. We find (A� B)0 = A0 + B0 and for 1 � j � N ,

(A� B)j = Aj +
j−1∑
i=0

Ai0

i!
Bj−i .

We have thus recovered the group law, equation (7), in a slightly different notation.
It is easily seen that this approach is not feasible in more complicated situations. The next

section shows how coordinates of the second kind and the composition law are related and
provides a general approach to computations.

2.7. The splitting lemma

As a vector space with basis {ξ1, . . . , ξd}, a typical element of g has the form X = αµξµ (here
indices are summed, see section 2.1). Thus exp(X) is a group element in a neighbourhood of
the identity. The αi are local coordinates, the coordinates of the first kind. If we write the group
element in terms of coordinates of the second kind, we have effectively factorized or split the
exponential into a product of one-parameter subgroups. Thus the lemma relating the two types
of coordinates is called the splitting lemma. This means finding the change-of-coordinates
mapping α→ A(α); i.e. we are interested in the relation

g = eX = g(A; ξ) = eA1(α)ξ1 · · · eAd(α)ξd .
(We continue to use A to denote the coordinates of the second kind and A(α) to denote the
mapping from the α coordinates.) In fact, the factorization corresponds to the right and left
dual vector fields and the flow of the group (composition) law. To see this, consider the left
dual:

X g(A; ξ) = X‡g(A; ξ) = αλπ‡
λµ∂µ g(A; ξ).

Denote α = (α1, . . . , αd), so that tα = (tα1, . . . , tαd) for a real parameter t . Let
x(t) = A(tα) � A denote the ‘flow of the group law’, for t in some neighbourhood of 0.
For any smooth function, the chain rule says that

d

dt
f (x(t)) = ẋµ ∂f

∂xµ

where the dot denotes differentiation with respect to t .
Now consider g(x(t); ξ) = g(A(tα); ξ)g(A; ξ) = etXg(A; ξ). Differentiating with

respect to t , we have

d

dt
g(x(t); ξ) = XetX g(A; ξ) = X‡g(x(t); ξ). (38)

Since, in g(x(t); ξ), the coordinates xi = xi(t) replace the A variables, the left dual acts with
evaluations and differentiations with respect to the x-variables; i.e.

ẋµ∂µg(x(t); ξ) = αλπ‡
λµ(x(t))∂µ g(x(t); ξ).

Thus,

ẋi = αλπ‡
λi(x).

A similar argument, pulling down X as in equation (38), to the right of g, yields the
corresponding result for x(t) = A� A(tα). So,
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Lemma 2.8. Flow of the group. Let X = αµξµ. Let A(α) be the map of coordinates
determined by

exp(X) = g(A; ξ) = eA1(α)ξ1 · · · eAd(α)ξd .
Let � denote the group law: g(A; ξ)g(B; ξ) = g(A� B; ξ).

(a) Let x(t) = A(tα)� A. Then x(t) satisfies the equations ẋj = αλπ‡
λj (x), with the initial

condition x(0) = A.
(b) Let x(t) = A� A(tα). Then x(t) satisfies the equations ẋj = αλπ∗λj (x), with the initial

condition x(0) = A.

We may reformulate this in terms of vector fields.

Corollary 2.9.

(a) The integral curves of the vector field X‡ = αλπ‡
λµ(A)∂µ are of the form A(tα)� A.

(b) The integral curves of the vector field X∗ = αλπ∗λµ(A)∂µ are of the form A� A(tα).
Now follows

Lemma 2.10 (Splitting lemma). Let X = αµξµ. Consider the factorization

exp(X) = g(A; ξ) = eA1(α)ξ1 · · · eAd(α)ξd .
Let π̃ denote the coefficient matrix (pi-matrix) of either the left or the right dual representation,
Then the coordinate map α → (A1(α), . . . , Ad(α)) is determined as follows. Solve the
differential equations

ẋj = αλπ̃λj (x) j = 1, . . . , d (39)

with the initial conditions x1(0) = · · · = xd(0) = 0. Then Ai(α) = xi(1), for 1 � i � d.

Proof. From lemma 2.8, for π̃ = π‡, we have x(1) = A(α) � A. With the initial variables
Ai = 0, 1 � i � d , we have x(1) = A(α) as required. Note that for π̃ = π∗, the zero initial
conditions yield the same result. �

An interesting corollary is

Corollary 2.11. For the coordinate map α→ A of coordinates of the first kind to coordinates
of the second kind, we have the identity

αλπ
‡
λj (A(α)) = αλπ∗λj (A(α))

for 1 � j � d .

Remark 2.12. By remark 2.6, taking transposes, this may be reformulated as π̌(A(α))α = α,
where π̌ is the group element formed by exponentiating the adjoint representation; i.e. this
shows invariance of the α’s under the adjoint group.

Example 2.13 (the affine group). Using the pi-matrices from proposition 2.4, we have for
the left flow ẋ1 = α1, ẋ2 = α2ex2 with the solution

x1(t) = A1 + α1t x2(t) = A2 + eA1(α2/α1)(e
α1t − 1).

For the right flow, we have ẋ1 = α1, ẋ2 = α1x2 + α2 with the solution

x1(t) = A1 + α1t x2(t) = (α2/α1)(e
α1t − 1) + A2eα1t .
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Now, setting Ai = 0, i = 1, 2, yields A(tα), and, furthermore, setting t = 1, we have the
coordinate map

A1(α) = α1 A2(α) = (α2/α1)(e
α1 − 1)

and from this we can check the consistency with the flow of the group, lemma 2.8, via
proposition 2.7.

Similar results may be found for the nilpotent groups using the pi-matrices, for example,
see after proposition 2.5.

2.7.1. Left dual flow. Since the right dual map ξi → ξ ∗i induces a homomorphism of Lie
algebras, we have, from corollary 2.9, with ξ ∗i = π∗(A)iµ∂µ,

g(B; ξ ∗)f (A) = f (A� B) (40)

for smooth functions f . However, the left dual ξi → ξ
‡
i induces an antihomomorphism. By

composing with the map S, S(X) = −X, we have that ξi → −ξ ‡
i induces a homomorphism

of Lie algebras. Thus, we have,

exp(αµ(−ξ ‡
µ)) = exp(−A1(α)ξ

‡
1 ) · · · exp(−Ad(α)ξ ‡

d ).

Now take inverses (in the group) to obtain

exp(αµξ
‡
µ) = exp(Ad(α)ξ

‡
d ) · · · exp(A1(α)ξ

‡
1 )

i.e. we have the ‘opposite group’. We denote the group element with the basis ordered in
reverse by ←g. Since the coordinate map α→ A is locally invertible, we conclude that ←g(A; ξ ‡)

is a general group element in a neighbourhood of the identity. Now multiply

exp(βµ(−ξ ‡
µ)) exp(αµ(−ξ ‡

µ)) = g(B;−ξ ‡)g(A;−ξ ‡) = g(B � A;−ξ ‡).

Again, taking inverses, we have

←
g(A; ξ ‡)

←
g(B; ξ ‡) = ←

g(B � A; ξ ‡).

As expected, the order of composition is reversed.
In analogy to equation (40), from corollary 2.9 we have the action

←
g(B; ξ ‡)f (A) = f (B � A). (41)

2.8. Matrix elements

Exponentiating the representation ρL of U(g) on U(g) we obtain a representation of G on
U(g). To simplify notation we will identify ρL(ξj ) and ξj when acting on U(g). We define

the matrix elements
〈 m
n

〉
A

of the representation G on U(g) by

g(A; ξ)[[n]] =
∑
m

〈m
n

〉
A

[[m]] (42)

where [[n]] = ξn1
1 · · · ξndd is the Poincaré–Birkhoff–Witt basis of U(g), noted in section 2.1.

These matrix elements are types of special functions and typically can be expressed in
terms of generalized hypergeometric functions. For a complete discussion of how their special
function properties can be derived see [3, 4].

The following proposition gives a useful formula for calculating the matrix elements.
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Proposition 2.14 (Principal formula). With the standard basis cm(A) = (A
m1
1 /m1!) · · ·

(A
md
d /md !) for polynomials in A, the matrix elements are given by

〈m
n

〉
A
= (ξ ∗)ncm(A) (43)

where (ξ ∗)n = (ξ ∗1 )n1 · · · (ξ ∗d )nd , basis monomials in terms of the right dual representation.

Proof. Write the product of group elements g(A; ξ) and g(B; ξ) as

g(A; ξ)g(B; ξ) = g(A, ξ)
∑
n

cn(B)[[n]]

=
∑
n

cn(B)g(A; ξ)[[n]]

=
∑
m,n

cn(B)
〈m
n

〉
[[m]] (44)

since theA’s andB’s commute. On the other hand, since the right dual gives a homomorphism
of Lie algebras, we can also write, cf equation (40),

g(A; ξ)g(B; ξ) = g(B; ξ ∗)g(A; ξ)
=

∑
n,m

cn(B)(ξ
∗)ncm(A)[[m]]. (45)

Comparing these two expressions leads to the desired formula. �

We mention some of the many interesting relations for the matrix elements that can now
be deduced from the group law and the relations of the operators ξ ∗. This approach to special
functions is in the spirit of the classic work of Vilenkin (see Klimyk and Vilenkin [8]).

Addition theorems. Writing the group law (as in the above proof)

g(A; ξ)g(B; ξ) =
∑
m,n

cn(B)
〈m
n

〉
A

[[m]] (46)

and as

g(A� B; ξ) =
∑
m

cm(A� B)[[m]] (47)

we read off the transformation formula

cm(A� B) =
∑
n

〈m
n

〉
A
cn(B) (48)

that is, the coefficients cn transform as a vector for the representation. Similarly,

g(A; ξ)g(B; ξ)[[n]] = g(A� B; ξ)[[n]] (49)

yields the addition theorem

〈m
n

〉
A�B
=

〈m
λ

〉
A

〈
λ

n

〉
B

(50)

where in the implied summation λ is a multi-index. So these are indeed a matrix representation
of the group acting on U(g).
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Differential recurrence relations. Since the right dual representation gives a homomorphism
of Lie algebras, we have

ξ ∗i
〈m
n

〉
A
= ξ ∗i (ξ ∗)ncm(A)

=
∑
r

Mrn(ξi)(ξ
∗)rcm(A)

=
∑
r

〈m
r

〉
A
Mrn(ξi) (51)

where Mmn(ξi) are the matrix elements of ρL(ξi), as in equation (10). Recall that this action
is the same as the double dual ξ̂i = Rµπ

‡
iµ(V) acting on the n-indices. In other words,

ξ ∗i
〈m
n

〉
A
= ξ̂i

〈m
n

〉
A

with the boldface indicating that the multi-index n is varied.

2.8.1. Example: the affine group. The matrix elements are given by the principal formula
(proposition 2.14)〈

m1m2

n1n2

〉
(A1,A2)

= (ξ ∗1 )n1(ξ ∗2 )
n2(A

m1
1 /m1!)(Am2

2 /m2!). (52)

Using the right dual as given in proposition 2.4 gives us〈
m1m2

n1n2

〉
(A1,A2)

= (∂1 + A2∂2)
n1(∂2)

n2(A
m1
1 /m1!)(Am2

2 /m2!)

=
(
n1

µ

)
∂
n1−µ
1 (A2∂2)

µ∂
n2
2 (A

m1
1 /m1!)(Am2

2 /m2!)

=
(
n1

µ

)
A
m1−n1+µ
1

(m1 − n1 + µ)!
(m2 − n2)

µ A
m2−n2
2

(m2 − n2)!
. (53)

Let 1F1
(
a

b

∣∣ x) = ∑∞
k=0[(a)kxk/(b)kk!], using standard notation for general hypergeometric

functions. For m1 � n1, the summation is readily converted to a 1F1 function. If m1 < n1, a
change of summation index µ = λ− (m1 − n1) leads to the following.

Proposition 2.15. Let 5 = m − n = (m1 − n1,m2 − n2). For the affine group, the matrix
elements are given by

〈
m1m2

n1n2

〉
(A1,A2)

=




A
51
1

51!

A
52
2

52!
1F1

( −n1

51 + 1

∣∣∣∣ −A152

)
if 51 � 0 52 � 0

(
n1

−51

)
5
−51
2

A
52
2

52!
1F1

( −m1

−51 + 1

∣∣∣∣ −A152

)
if 51 < 0 52 � 0.

Bringing in the double dual, ξ̂1 = R1, ξ̂2 = R2 eV1 , we find the following differential recurrence
relations:

(∂1 + A2∂2)

〈
m1m2

n1n2

〉
(A1,A2)

=
〈
m1,m2

n1 + 1, n2

〉
(A1,A2)

∂2

〈
m1m2

n1n2

〉
(A1,A2)

=
∑

0�k�n1

(
n1

k

) 〈
m1,m2

n1 − k, n2 + 1

〉
(A1,A2)

.

These may be rewritten using proposition 2.15 to yield identities and recursion formulae
for the 1F1 function.
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Remark 2.16.

(a) Similar results may be found for the nilpotent groups using the dual representations found
above.

(b) One can find recurrence relations not involving derivatives that generalize the well known
‘contiguous relations’ satisfied by general hypergeometric functions. See the references
cited above for this and further results; see, e.g., [4].

3. Evolution equations and processes on a Lie group

Consider the equation

∂u

∂t
= H(D)u (54)

for u(x, t) with initial condition u(x, 0) = f (x). Assume the operator H(D) is given as
follows. Let H(z) be analytic and defined in a neighbourhood of the origin in the complex
plane by

etH(z) =
∫ ∞
−∞

ezx pt (dx) (55)

where pt is a convolution family of probability measures on the real line. H is called an
analytic generator. Then the solution to equation (54) is given by

u(x, t) =
∫ ∞
−∞

f (x + y) pt (dy)

for bounded continuous functions f and for polynomials f .
If in H(D1, . . . , Dd) we (can) replace (unambiguously) eachDi by ξi , a chosen basis for

the Lie algebra g, then we write H(ξ). A typical case is where H(z) = H1(z1) + · · · +Hd(zd)

is a sum of analytic generatorsHi each depending only on one variable. Consider the equation
ut = H(ξ)u. This equation is subject to various interpretations. We mention two. Namely,

• We replace ξ by an operator realization of the Lie algebra, for example, by vector fields
such as ξ ∗, and find solutions u(A, t) with polynomial initial condition u(A, 0) = f (A).
In this sense, corollary 2.9 solves the case where H is linear, i.e. either H = αµξ

∗
µ or

H = αµξ ‡
µ.

• Write the equation in operator form: ut = [H, u]. We look for solutions u(ξ, t) with
initial conditions u(ξ, 0) in U(g).

When H is given according to equation (55) there is a stochastic process (Lévy process
or a process with stationary, independent increments) on R

d with a distribution at each fixed t
given by the probability measure pt . Let y(t) denote this stochastic process starting from the
origin. We map it into the Lie group in the following way. For a time increment5it = ti−ti−1,
let 5iy = y(ti)− y(ti−1), for i = 1, . . . , N . Define the multiplicative increment

g(5iy; ξ) = e(5iy)1ξ1 · · · e(5iy)d ξd .

Now consider the product integral over the time interval [0, t]∏
g(5y; ξ) = g(51y; ξ)g(52y; ξ) · · · g(5Ny; ξ)
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with time increasing from left to right. We have a processY (t)on the group if5t = sup i5it →
0 as N →∞ and the product converges. Then we write the product integral

g(Y (t); ξ) = lim
5t→0

∏
g(5y; ξ) =

∏
g(dy; ξ)

cf McKean [10], Hakim-Dowek and Lépingle [7].
One can also consider discrete-time processes, in which case no limit is necessary.

Remark 3.1. This approach also works for quantum groups (see [2]).

For Y , we have the following integral formula.

Theorem 3.2. The process on the group satisfies

Y (t) =
∫ t

0

(
Y (s)� dy − Y (s))

in the sense that the corresponding group element exists (as a product integral) if and only if
this integral exists.

Proof. Write 5it = ti − ti−1. Then

g(Y (ti−1 +5it); ξ) = g(Y (ti−1); ξ)g(5iy; ξ) = g(Y (ti−1)�5iy; ξ)
so that Y (ti) = Y (ti−1 + 5it) = Y (ti−1) � 5iy. Now subtract Y (ti−1) and integrate, i.e.
summing and letting 5t → 0 yields the result. �

Note that this gives an Itô, non-anticipating, stochastic integral.
Now consider the case where the components yi are mutually independent. Then we have,

with angled brackets denoting the expected value,

〈exp(zµyµ(t))〉 = etH1(z1) · · · etHd (zd ).
For a multiplicative increment, we have

〈g(5iy; ξ)〉 = 〈e(5iy)1ξ1 · · · e(5iy)d ξd 〉
= e(5i t)H1(ξ1) · · · e(5i t)Hd(ξd )

where we can integrate each factor separately by independence. Now we have〈 ∏
g(5y; ξ)

〉
=

∏
e(5i t)H1(ξ1) · · · e(5i t)Hd(ξd ).

Here from the Trotter product formula we find on the right-hand side the sum of the generators
even in the non-commutative case; e.g., take each 5it to be t/N for fixed t . Then we have〈 ∏

g(5y; ξ)
〉
= (

e(t/N)H1(ξ1) · · · e(t/N)Hd(ξd ))N

i.e.

Proposition 3.3. Let y(t) = (y1(t), . . . , yd(t)) have independent components with
〈exp(ziyi(t))〉 = exp(tHi(zi)). Then the corresponding process on the group satisfies

〈g(Y (t); ξ)〉 = exp
[
t
(
H1(ξ1) + · · · +Hd(ξd)

)]
.
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3.1. Left dual process

If instead of g(A; ξ) or g(A; ξ ∗) we use ←g(A; ξ ‡) in the above construction, cf section 2.7.1,
the � products involved are reversed, i.e. the process is built up from right to left:

←
g(51y; ξ ‡) · · · ←g(5Ny; ξ ‡) = ←

g(5Ny � · · · �51y; ξ ‡)

theorem 3.2 becomes

Theorem 3.4. The left dual process on the group satisfies

Y (t) =
∫ t

0

(
dy � Y (s)− Y (s))

in the sense that the corresponding group element exists (as a product integral) if and only if
this integral exists.

What is interesting is that proposition 3.3 is virtually unchanged. The reason is that in the
limit the generator becomes the sum of the individual generators and thus is symmetric with
respect to reversal; i.e.

Proposition 3.5. Let y(t) = (y1(t), . . . , yd(t)) have independent components with
〈exp(ziyi(t))〉 = exp(tHi(zi)). Then the corresponding left dual process on the group satisfies

〈←g(Y (t); ξ ‡)〉 = exp
[
t
(
H1(ξ

‡
1 ) + · · · +Hd(ξ

‡
d )

)]
.

Example 3.6. Let us illustrate this with the affine group. Here an interesting phenomenon
occurs that arises due to the time asymmetry of the construction. In the direct construction,
the composition law A � B = (A1 + B1, eB1A2 + B2) causes difficulties since the second
component looks like

∫ t
0 (e

dy1 − 1)Y2(s) + dy2. However, if we use the left dual construction,
we find that the process takes the form Y (t) = (

y1(t),
∫ t

0 ey1(s) dy2(s)
)
.

4. Appell systems and evolution equations

Appell systems {hn(x); n ∈ N} on R are classically characterized by the two conditions:

• hn(x) is a polynomial of degree n;
• d

dx hn(x) = nhn−1(x).

Interesting examples are furnished by the shifted moment sequences

hn(x) =
∫ ∞
−∞
(x + y)n p(dy) (56)

where p is a probability measure on R with all moments finite. In the case whereH(z) is given
as in equation (55), this is the solution to the evolution equationut = H(D)uwithu(x, 0) = xn
at t = 1. With a complex change of variables, this includes the Hermite polynomials

Hn(x) = 1√
2π

∫ ∞
−∞
(x + iy)ne−y

2/2 dy (57)

for the Gaussian case. Here we wish to use the basic construction of [5] to define Appell
systems on Lie groups and consider some explicit examples.

These Appell systems are of interest since they provide (analogues of) polynomial
solutions of evolution equations on Lie groups, including natural generalizations of the classical
heat equation on Euclidean spaces.

Taking our cue from formula (56), let Y denote a random variable on R
d .
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Definition 4.1. The left and right Appell systems (corresponding to the random variable Y )
on the Lie group are defined as

hLn (A) = 〈cn(Y � A)〉 hRn (A) = 〈cn(A� Y )〉 (58)

with the angle brackets denoting the expected value.

Using the fact that cn transforms as a vector, i.e. cn(A� B) =
∑

m

〈 n
m

〉
A
cm(B) we have

Proposition 4.2. The left and right Appell systems satisfy

hLn (A) =
∑
m

cm(A)
〈 〈 n
m

〉
Y

〉
hRn (A) =

∑
m

〈 n
m

〉
A
〈cm(Y )〉.

Of particular interest are Appell systems related to the processes Y (t) constructed in the
previous section. We explicitly indicate t dependence in hn.

Proposition 4.3.

(a) Let Y (t) satisfy 〈g(Y (t); ξ)〉 = etH(ξ). Then

hRn (A, t) = etH(ξ
∗)cn(A).

Thus, u(A, t) = hRn (A, t) satisfies the evolution equation ut = H(ξ ∗)u with the initial
condition u(A, 0) = cn(A).

(b) Let Y (t) be a left dual process, satisfying

〈←g(Y (t); ξ ‡)〉 = etH(ξ
‡).

Then

hLn (A, t) = etH(ξ
‡)cn(A).

Thus, u(A, t) = hLn (A, t) satisfies the evolution equation ut = H(ξ ‡)u with the initial
condition u(A, 0) = cn(A).

Proof. Apply equations (40) and (41) with f (A) = cn(A). Then the results follow from the
definitions. �

5. Examples

5.1. Heat polynomials for the affine group

In this section we study the Appell systems solving some heat equations related to the affine
group.

It is convenient to take a realization satisfying the commutation relations [ξ2, ξ1] = ξ1.
Using the machinery developed above, one finds the right dual ξ ∗1 = eA2∂1, ξ ∗2 = ∂2. Using
the right dual (for example) and equation (40), we find the group law

A� B = (A1 + eA2B1, A2 + B2).

One realization of this algebra is given by the operators on functions of one variable:
ξ1 = −iD, ξ2 = −(xD + a), for some constant a, here i = √−1, D = d/dx as usual. Take
y(t) = (w1(t), w2(t)), independent standard Wiener processes and denote the process on the



Solving evolution equations on Lie groups 2795

group by W(t). That is, H(z) = 1
2 (z

2
1 + z2

2), corresponding to the standard Laplacian on R
2.

From theorem 3.2, we have

W1(t) =
∫ t

0
ew2(s) dw1(s) W2(t) = w2(t).

For polynomial f (say),

etH(ξ)f (x) = 〈eξ1W1(t)eξ2W2(t)f (x)〉 = 〈e−aW2(t)f (e−W2(t)(x − iW1(t))〉
with H(ξ) = 1

2

(
(xD + a)2 − D2

)
. The eigenfunctions of H are Gegenbauer polynomials,

satisfying

((xD + a)2 −D2)Can(x) = (n + a)2Can(x)

with

Can(x) =
∑
k

(a)n−k
(n− 2k)!k!

(−1)k(2x)n−2k (59)

xn = n!=(a)

2n
∑
k

a + n− 2k

k!(a + n− k)!C
a
n−2k(x). (60)

Therefore, taking f (x) = xn/n!, we have the Appell systems

〈e−aW2(t)e−nW2(t)(x − iW1(t))
n〉 = =(a)

2n
∑
k

a + n− 2k

k!(a + n− k)!C
a
n−2k(x) et (n+a−2k)2/2

satisfying ut = H(ξ) u. An interesting special case arises taking a = 0. Then the
eigenfunctions of H are Chebyshev polynomials Tn:

((xD)2 −D2)Tn = n2Tn

with

Tn(x) =
∑
k

(
n− k
k

)
n/2

n− k (−1)k(2x)n−2k (61)

xn = 2−n
∑
k

(
n

k

)
Tn−2k(x). (62)

Therefore, with f (x) = xn,

〈e−nW2(t)(x − iW1(t))
n〉 = 2−n

∑
k

(
n

k

)
et (n−2k)2/2Tn−2k(x). (63)

Now consider H(ξ ∗) = 1
2

(
e2x2D2

1 +D2
2

)
, writing the right dual in {x,D} variables. Then, via

the group law,

exp(t (H(ξ ∗))f (x) = 〈g(W ; ξ ∗)f (x)〉 = 〈f (x1 + ex2W1(t), x2 +W2(t))〉.
Choosing f (x) = xn1 e−nx2 , suggested by equation (63),

exp(t (H(ξ ∗))f (x) = 〈(x1 + ex2W1(t))
ne−n(x2+W2(t))〉

= 〈(x1e−x2 +W1(t))
ne−nW2(t)〉.

Denoting the right-hand side of equation (63) by φn(x), comparing with the above equation
shows that

〈(x1e−x2 +W1(t))
ne−nW2(t)〉 = inφn(−ix1e−x2)
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i.e. we have the Lie reduction

v = x1e−x2
(
e2x2D2

1 +D2
2

)
f (v) =

((
v

d

dv

)2

+
d2

dv2

)
f (v).

This reduction depends only on group properties, and in this context shows the equivalence of
the corresponding classical processes.

5.2. Heat polynomials on some nilpotent groups

5.2.1. Heisenberg group. First take the N = 2 case of the class of nilpotent groups we have
been considering. Take the realization

ξ1 = x ξ2 = 1 ξ0 = D.
For the process, take any y1(t) of the type we have been considering, independent of w0(t),
which we take to be a standard Wiener process. Take y2(t) = 0. Thus,H(ξ) = 1

2D
2 +H1(x).

From the group law, section 2.6.2,A�B = (A1+B1, A2 +B2 +A0B1, A0 +B0) and theorem 3.2,
we have

Y (t) =
(
y(t),

∫ t

0
w(s) dy(s), w(t)

)
.

Thus,

〈g(Y ; ξ)f (x)〉 =
〈
exy(t) exp

( ∫ t

0
w(s) dy(s)

)
ew(t)Df (x)

〉

=
〈

exp

( ∫ t

0
(x + w(s)) dy(s)

)
f (x + w(t)

〉
.

Integrating over the y(t) process, by independence, we have

exp
[
t
(

1
2D

2 +H1(x)
)]
f (x) =

〈
exp

( ∫ t

0
H1(x + w(s)) ds

)
f (x + w(t)

〉

i.e. we have recovered the classical Feynman–Kac formula. For computational aspects of the
Feynman–Kac formula, see, for example, Korzenowski [9].

For the right dual, in {x,D} variables, from proposition 2.5 we have H(ξ ∗) = 1
2D

2
0 +

H1(D1 + x0D2). Here take y2(t) = 0, with y0(t) = w0(t), y1(t) = w1(t), independent
standard Wiener processes, denoting the process on the group by W(t). Then via the group
law it follows that

〈g(W ; ξ ∗)f (x)〉 = 〈f (x �W)〉

=
〈
f (x1 + w1(t), x2 +

∫ t

0
(x0 + w0(s)) dw1(s), x0 + w0(t))

〉
.

Taking f to be of the special form f (x1, x2, x0) = ex2φ(x0) shows that the Feynman–Kac
formula is related to the three-dimensional process by a Lie reduction; i.e. the choice of a
special combination of variables.

Note that the generator of the process H = 1
2 (D

2
0 + (D1 + x0D2)

2) acts nilpotently on
polynomials; i.e. there are finite-dimensional invariant polynomial subspaces and the operator
exponential etH reduces to a finite series. Thus, moments of the process, i.e. joint correlation
functions of the components, up to any given order can be computed, either symbolically or
by choosing a polynomial basis and converting the operator to a matrix.
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5.2.2. Higher-order nilpotent case. Here we continue with the case N = 3 of the nilpotent
examples. This will suggest how the theory goes for general N . We write the details for
the Wiener process, i.e. take y0(t) = w0(t), y1(t) = w1(t), independent standard Wiener
processes, as above, with y2(t) = y3(t) = 0, for simplicity.

First, take the realization

ξ1 = 1
2x

2 ξ2 = x ξ3 = 1 ξ0 = D.

Then, with H = 1
2 (D

2
0 + 1

4x
4) we have the group law

A� B = (A1 + B1, A2 + B2 + A0B1, A3 + B3 + A0B2 + ( 1
2A

2
0)B1, A0 + B0)

and the process

W(t) = (W1(t),W2(t),W3(t),W0(t))

=
(
w1(t),

∫ t

0
w0(s) dw1(s),

1
2

∫ t

0
w0(s)

2 dw1(s), w0(t)

)
.

Thus, with W2 and W3 given in the above equation, we have

〈g(W ; ξ)f (x)〉 = 〈ex2w1(t)/2+xW2(t)+W3(t)f (x0 + w0(t))〉.
In this form the moments are not accessible, nor are there polynomial solutions.

Now, take the right dual, in {x,D} variables. Then

H = 1
2

(
D2

0 +
(
D1 + x0D2 + ( 1

2x
2
0 )D3

)2)
and

〈g(W ; ξ ∗)f (x)〉 = 〈f (x1 + w1, x2 +W2 + x0w1, x3 +W3 + x0W2 + ( 1
2x

2
0 )w1, x0 + w0)〉.

Now the generator acts nilpotently, we have polynomial solutions, and moments to any given
order can be calculated. Finally, note we have a Lie reduction to the one-variable case similar
to that for N = 2.

6. Conclusion

The interplay of Lie theory—Lie algebras, Lie groups, the theory of Lie symmetries of
differential equations—and the theory of stochastic processes is a subject of great interest.
Much remains to be done. In the mathematical physics context, this area ties in with path
integrals, including methods involving changes of variables and reduction methods for path
integrals. Our approach to computing with Lie algebras and Lie groups, surveyed in the first part
of this work, provides effective tools for working in this context. This provides a mathematical
foundation for doing symbolic computations in the modern computing environment, using
systems such as Maple and Mathematica that provide support for exact calculations.
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[1] Cariñena J F, Marmo G and Nasarre J 1998 The non-linear superposition principle and the Wei–Norman method
Int. J. Mod. Phys. 13 3601–27

[2] Feinsilver P, Franz U and Schott R 1997 Duality and multiplicative stochastic processes on quantum groups J.
Theor. Probab. 10 795–818

[3] Feinsilver P and Schott R 1996 Algebraic Structures and Operator Calculus, Vol. III: Representations of Lie
groups (Dordrecht: Kluwer)

[4] Feinsilver P and Schott R 1996 Differential relations and recurrence formulas for representations of Lie groups
Stud. Appl. Math. 96 387–406

[5] Feinsilver P and Schott R 1992 Appell systems on Lie groups J. Theor. Probab. 5 251–81
[6] Gruber B, Doebner H D and Feinsilver P 1982 Representations of the Heisenberg–Weyl algebra and group

Kinam 4 241–78
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